BIG

NUMBERS

How can I determine the exact value of something like 200!

Which Structure to use

An array of integers.

See this as the number's base n representation.
If we store x as $\mathrm{a}[0]$ to $\mathrm{a}[\mathrm{k}]$ to base n then: $x=a[0]+a[1] \cdot n+a[2] \cdot n^{2}+a[3] \cdot n^{3}+\ldots+a[k] \cdot n^{k}$.

Then all we still need is a variable for the sign.

Bignumber =array [-2..max] of integer

- -2 is to store the max exponent in a bignumber.
- -1 is to store the sign of the bigrumber.
- 0..max store the coefficients of baseplace.
- How do I decide what base to use:
- Normally we choose the base as a power of 10
- This makes writing it down in the end easier
- Choose the base so as to prevent overflow
- Suppose you choose base n - hence 0 .. $\mathrm{n}-1$ have to fit.
- If you are only adding make sure $2^{*}(n-1)$ will fit into your int type.
- If you are multiplying as well make sure that $(\mathrm{n}-1)^{2}$ will fit

Operations

- Comparison
- Addition
- Subtraction
- Multiplication
- Division

Comparison

- I like to use -1 for negative, 0 for 0 and 1 for positive.

If $\operatorname{sign} A>\operatorname{sign} B$ then return $A>B$ else
if sign $B>\operatorname{sign} A$ then return $B>A$ else (if signA=signB)
if $\operatorname{sign} \mathbf{A}=\mathbf{0}$ then return $\mathbf{A}=\mathbf{B}$ (beceuse both are 0)
else
ctr $=\max ($ size A,size $B)$
while (A[ctr] = B[ctr]) and (ctr > 0) do ctr $=c t r-1$
if $\mathbf{A}[\mathbf{c t r}]>\mathbf{B}$ [ctr] then (implying $\operatorname{Abs}(A)>\operatorname{Abs}(B)$ if $\operatorname{sign} A=1$ then return $A>B$ else return $A<B$
else
If $A[c t r]$ < $B[c t r]$ then if sign $A=1$ then return $A<B$ else return $\mathbf{A}>B$
else (if $\operatorname{Abs}(A)=\operatorname{Abs}(B)$) then return $\mathbf{A}=\mathbf{B}$

Addition

- Firstly write a absolute_sum procedure
- Secondly write a absolute_difference one
- Use absolute_sum for equal sign
- Use absolute_difference for opposite sign
- Note : if it is known that the numbers are all positive you can leave out the absolute_difference procedure.

Absolute sum

carry $=0$
for pos $=0$ to max (sizeA,sizeB) do $C($ pos $)=A(p o s)+B(p o s)+c a r r y$ carry = C(pos) div base C(pos) $=\mathbf{C}($ pos) mod base
If carry <> 0 then
sizeC = max(sizeA,sizeB) +1
C(sizeC) = carry
else
sizeC = max(sizeA,sizeB)

Absolute difference

borrow = 0
for pos $=0$ to $\max ($ size A,sizeB) do C(pos) = A(pos) - B(pos) - borrow If $\mathbf{C}($ pos $)<0$

C(pos) = C(pos) + base
borrow = 1
else
borrow = 0
While (C(pos) =0) and (pos > 0) do
pos = pos - 1
sizeC $=$ pos (this works for pos=0 as well)

Make sure that $A>B$ for this or take care of it in procedure

$$
A+B=C
$$

If A and B have the same sign do Absolute addition and signC = sign A
If they have different sign do Absolute difference
(remember large minus small abs value) and adjust sign
To find out which one has larger absolute value you might consider writing an absolute comparison.

Subtract

Negate the sign of B and Add A and (-B)

Multiplication by scalar

If \mathbf{s} < $\mathbf{0}$ then
signB $=$-sign A
$\mathrm{s}=-\mathrm{s}$
(so that we multiplywith a positive)
else
$\operatorname{signB}=\operatorname{sign} A$
carry $=0$
for pos $=0$ to sizeA do
B[pos] = A[pos]*s + carry
carry = B[pos] div base
$B[p o s]=B[p o s]$ mod base
pos = sizeA
While (carry <> 0) do (taking care of the overflow probler)
pos = pos + 1
B[pos] = carry mod base
carry = carry div base
size = pos

Multiplication by bignumber

The idea behind this is to first write a procedure to take care of the offset. (call it multiply_and_add)
Difference from scalar multiplication:

1. Replace B[pos] with C[pos+offset] throughout (use C because in the main procedure we are multiplying A with B to get C)
2. Do not assign A[pos]*s + carry directly to C[pos+offiset] but add it to the existing value.
The main procedure will then look something like this:

for pos $=0$ to sizeB do

multiply_and_add(A,B(pos)(the scalar),pos(the offset), C)
$\sin C=\operatorname{sig} A * \operatorname{sign} B$

Division by scalar

Like with the other cases we will first write a divisien by scalar:

```
rem = 0
sizeC = 0
for pos = sizeA to 0 do
    rem = (rem*base) = A[pos]
    C[pos] = rem div s
    if (C[pos] > 0) and (pos > sizeC) then
```

 rem \(=\mathbf{r e m} \bmod \mathbf{s}\) (this will in the end give the remainder)

Division by bignumber

Division by multiple subtraction:
Note that this is much too slow for most large cases
This time declare rem as a bignumber as well
rem $=0$
For pos = sizeA to 0 do
rem = rem*base(scalar) + A[pos] (use procedures)
C[pos] = 0
While (rem > B) do (use compare procedure) C[pos] = C[pos] + 1 rem = rem - B (use subtract or add procedure)
if (C[pos] >0) and (pos > sizeC) then sizeC = pos

Division by using binary search

Once again let rem also be a bignumber rem = 0
For $=$ sizeA to 0 do
rem = rem*base + A[pos] (use procedures as above)
lower = 0
upper = base - 1
while upper > lower do
mid = (upper + lower) div $2+1$
$\mathbf{D}=\mathbf{B}$ * mid (a scalar)
E = D-rem
if signE >=0
lower = mid
else
upper = mid - 1
C[pos] = lower
rem = rem - B*lower and then control C's size like before

