
BIG
NUMBERS

How can I determine the exact
value of something like 200!

Which Structure to use

An array of integers.

See this as the number’s base n representation.

If we store x as a[0] to a[k] to base n then:

 x = a[0] + a[1].n + a[2].n2 + a[3].n3 + … + a[k].nk.

Then all we still need is a variable for the sign.

Bignumber = array [-2..max] of integer

� -2 is to store the max exponent in a bignumber.

� -1 is to store the sign of the bignumber.

� 0..max store the coefficients of baseplace.

� How do I decide what base to use:
– Normally we choose the base as a power of 10
– This makes writing it down in the end easier
– Choose the base so as to prevent overflow
– Suppose you choose base n – hence 0 .. n-1 have to fit.
– If you are only adding make sure 2*(n-1) will fit into your

int type.
– If you are multiplying as well make sure that (n-1)2 will fit

Operations

� Comparison
� Addition
� Subtraction
�Multiplication
� Division

Comparison

� I like to use -1 for negative, 0 for 0 and 1 for positive.� � � ��� � 	
 � ��� � �� �� �� � � �� � 	
 � � � ��

� � � � � � �
 � � � � 	� � �� � � �� � �
 	 � � �� (if signA=signB)� � � � � � 	�� �� � �� � � �� � 	�� �

(because both are 0)

� � ��
�� � � �� � � � ��� � 	�� � � � � � �

� � �� � 	 �� � ! � � �� � ! � � � " � �� �
 � � "�#

�� � � �� � $ %

� � 	 �� � !
 � �� � !� � � (implying Abs(A) > Abs(B)� � � � � � 	�� % � � �� � � �� � 	
 �

� � �� � � � �� � 	& �

� � ��
� � 	 �� � ! & � �� � !� � �

� � � ��� � 	� % � �� �� � � �� � 	& �

� � �� � � � �� � 	
 �

� � �� (if Abs(A) = Abs(B))

� �� �� � � �� � 	�� �

Addition

' Firstly write a absolute_sum procedure

' Secondly write a absolute_difference one

' Use absolute_sum for equal sign

' Use absolute_difference for opposite sign

' Note : if it is known that the numbers are all
positive you can leave out the
absolute_difference procedure.

Absolute sum

� � � � (� �

�# �)# � � �� # �� � � � ��� � 	�� � ��� � � � "�#

* �)# � � � 	 �)# � �+ � �)# � �+ � � � � (

� � � � (� * �)# � � " ��, -� ��

* �)# � � � * �)# � � �# " -� ��

� � � � � � (&
 �� �� �

� ��� � * � � � � � � � � � 	�� � � � � � � + %

* � � � � � * � � � � � � (

� � ��
� ��� � * � � � � � � � � � 	�� � � � � � �

23 874
+15 487

39 361

 1 1 1

Absolute difference

-# � � # �� �

�# �)# � � �� # �� � � � ��� � 	�� � ��� � � � "�#

* �)# � � � 	 �)# � �/. � �)# � �/. -# � � # �

� � * �)# � � & �

* �)# � � � * �)# � �+ -� ��

-# � � # �� %

� � ��
-# � � # �� �

0 � �� � * �)# � � � � � � � " �)# �
 � � "�#

)# � �)# �. %

� �� � * �)# � (this works for pos=0 as well)

Make sure that A > B for this or take care of
it in procedure

23 874
-15 487

8 367

 1 1 1

Add
A + B = C
If A and B have the same sign do Absolute addition
and signC = signA
If they have different sign do Absolute difference
(remember large minus small abs value) and adjust
sign
To find out which one has larger absolute value you
might consider writing an absolute comparison.

Subtract
Negate the sign of B and Add A and (-B)

Multiplication by scalar

� � � & �� �� �

� � � � � � . � � � � 	

� � . � (so that we multiply with a positive)

� � ��
� � � � � � � � � � 	

� � � � (� �

�# �)# � � �� # � �� � 	 "#

�)# � ! �)# � ! 1 �+ � � � � (

� � � � (� �)# � ! " ��, -� ��

�)# � ! � �)# � ! �# " -� ��

)# � � � ��� � 	

0 � �� � � � � � (&
 � � "# (taking care of the overflow problem)

)# � �)# �+ %

�)# � ! � � � � � (�# " -� ��

� � � � (� � � � � (" ��, -� ��

� �� � � �)# �

Multiplication by bignumber

The idea behind this is to first write a procedure to take care of the
offset. (call it multiply_and_add)
Difference from scalar multiplication:
1. Replace

�)# � ! with

*)# �+ # � � �� � !

 throughout (use C
because in the main procedure we are multiplying A with B to get
C)
2. Do not assign

)# � ! 1 �+ � � � � (directly to

*)# �+ # � � �� � !

 but
add it to the existing value.

The main procedure will then look something like this:�# �)# � � �� # � �� � � "#

� � �� �) � (32 � � "
2 �

" " � 	 � � �)# � �(the scalar),)# �(the offset) � * �

� � � * � � ��� � 	 1 � � � � �

Division by scalar

Like with the other cases we will first write a division by scalar:

� � � � �

� �� � * � �

�# �)# � � � ��� � 	� # � "#

� � � � �� � � 1 -� �� � �)# � !

*)# � ! � � � � " ��, �

� � � *)# � !
 � � � � " �)# �
 � �� � * � � �� �

� � � � � � � �# " � (this will in the end give the remainder)

Division by bignumber
Division by multiple subtraction:

Note that this is much too slow for most large cases
This time declare � � � as a bignumber as well

� � � � �

4# �)# � � � ��� � 	� # � "#

� � � � � � � 1 -� �� (scalar)

+)# � ! (use procedures)*)# � ! � �

0 � �� �� � �
 � � "�# (use compare procedure)

*)# � ! � *)# � !+ %

� � � � � � � $ �

(use subtract or add procedure)� � � *)# � !
 � � � � " �)# �
 � ��� � * �� �� �

� � � � * �)# �

Division by using binary search
Once again let � � � also be a bignumber

� � � � �

4# � � � ��� � 	� # � "#

� � � � � � � 1 -� �� +)# � ! (use procedures as above)�# �� � � �

�))� � � -� �� . %

� � �� �))� �
 ��# �� � "�#

� � " � � �))� � + ��# �� � � " ��, 5+ %

6 � � 1 � � "

(a scalar)7 � 6 $� � �

� � � ��� � 7
 � �

�# �� � � � � "

� � ��
�))� � � � � " $ %

*)# � ! � �# �� �

� � � � � � � $ � 1 ��# �� � and then control C’s size like before

